Kali
ini rumus matematika akan membahas materi mengenai
transformasi geometri.
Mungkin teman-teman telah tahu tentang transformasi geometri, untuk
lebih memahami mengenai materi ini berikut ini akan dijelaskan secara
terperinci hal-hal mengenai transformasi geometri.
TRANSFORMASI GEOMETRI
Transformasi
merupakan suatu pemetaan titik pada suatu bidang ke himpunan titik pada
bidang yang sama. Jenis-jenis dari transformasi yang dapat dilakukan
antara lain :
- Translasi (Pergeseran)
- Refleksi(Pencerminan)
- Rotasi(Perputaran)
- Dilatasi(Penskalaan)
Berikut ini ilustrasinya :

TRANSLASI / PERGESERAN

Berdasarkan
gambar di atas, segitiga ABC yang mempunyai koordinat A(3, 9), B(3, 3), C(6, 3) ditranslasikan:

Berdasarkan penjelasan diatas, maka untuk mencari nilai translasi dapat digunakan rumus sebagai berikut :

dimana :
- a menyatakan pergeseran horizontal (kekanan+, kekiri-)
- b menyatakan pergeseran vertikal (keatas+,kebawah-)
REFLEKSI / PENCERMINAN

Segitiga ABC dengan koordinat A(3, 9), B(3, 3), C(6, 3) dicerminkan:
- terhadap sumbu Y menjadi segitiga A2B2C2 dengan koordinat A2(-3, 9), B2(-3, 3), C2(-6, 3)
- terhadap sumbu X menjadi segitiga A3B3C3 dengan koordinat A3(3, -9), B3(3, -3), C3(6, -3)
- terhadap titik (0, 0) menjadi segitiga A4B4C4 dengan koordinat A4(-3, -9), B4(-3, -3), C4(-6, -3)

Segitiga ABC dengan koordinat A(3, 9), B(3, 3), C(6, 3) dicerminkan:
- terhadap garis x = -2 menjadi segitiga A5B5C5 dengan koordinat A5(-7, 9), B5(-7, 3), C5(-10, 3)
- terhadap sumbu y = 1 menjadi segitiga A6B6C6 dengan koordinat A6(3, -7), B6(3, -1), C6(6, -1)

Segitiga PQR dengan koordinat P(6, 4), Q(6, 1), R(10, 1) dicerminkan:
- terhadap garis y = x menjadi segitiga P2Q2R2 dengan koordinat P2(4, 6), Q2(1, 6), R2(1, 10)
- terhadap garis y = -x menjadi segitiga P3Q3R3 dengan koordinat P3(-4, -6), Q3(-1, -6), R3(-1, -10)
Berdasarkan penjelasan diatas dapat dirumuskan :
Pencerminan terhadap garis x = a atau y = b

Pencerminan terhadap sumbu x atau sumbu y

Pencerminan terhadap titik (0, 0)

Pencerminan terhadap garis y = x atau y = –x

Pencerminan terhadap garis y = mx + c
Jika m = tan θ maka:
ROTASI / PERPUTARAN

Untuk rotasi
searah jarum jam, sudut diberi tanda negatif
(–)
Untuk rotasi
berlawanan arah jarum jam, sudut diberi tanda
positif (+)
Segitiga ABC dengan koordinat A(3, 9), B(3, 3), C(6, 3) dirotasi:
- +90° atau –270° dengan pusat rotasi O(0, 0) menjadi segitiga A2B2C2 dengan koordinat A2(-9, 3), B2(-3, 3), C2(-3, 6)
- +270° atau –90° dengan pusat rotasi O(0, 0) menjadi segitiga A3B3C3 dengan koordinat A2(9, -3), B2(3, -3), C2(3, -6)
- +180° atau –180° dengan pusat rotasi O(0, 0) menjadi segitiga A4B4C4 dengan koordinat A4(-3, -9), B4(-3, -3), C4(-6, -3)
Berdasarkan penjelasan diatas, maka rotasi dapat dirumuskan sebagai berikut :
Rotasi sejauh θ dengan pusat (a, b)
Rumus praktis untuk rotasi dengan pusat rotasi O(0, 0):

DILATASI / PENSKALAAN

Segitiga ABC dengan koordinat A(3, 9), B(3, 3), C(6, 3) didilatasi:
- dengan faktor skala k = 1/3 dan pusat dilatasi O(0, 0) menjadi segitiga A2B2C2 dengan koordinat A2(1, 3), B2(1, 1), C2(2, 1)
- dengan faktor skala k = 2 dan pusat dilatasi O(0, 0) menjadi segitiga A3B3C3 dengan koordinat A3(6, 18), B3(6, 6), C3(12, 6)
Untuk nilai
k negatif, arah bayangan
berlawanan dengan arah aslinya.
Berdasarkan penjelasan diatas, maka dapat dirumuskan :
Dilatasi dengan pusat (a, b) dan faktor skala k
Rumus praktis dilatasi dengan faktor skala k dan pusat dilatasi O(0, 0):

Selain
4 transformasi yang telah dijelaskan diatas, juga terdapat 2
transformasi lagi yaitu shearing / gusuran dan stretching / regangan.
Perhatikan penjelasan dibawah ini :
GUSURAN/SHEARING

Persegi panjang ABCD dengan koordinat A(1, 1), B(4, 1), C(4, 6), D(1, 6) akan digusur:
- menurut
arah sumbu X (invariant sumbu X) dengan faktor skala k = 2 menjadi
persegi panjang A2B2C2D2 dengan koordinat A2(3, 1), B2(6, 1), C2(16, 6),
D2(13, 6)
- menurut arah sumbu Y (invariant sumbu Y) dengan
faktor skala k = 2 menjadi persegi panjang A3B3C3D3 dengan koordinat
A3(1, 3), B3(4, 9), C3(4, 14), D3(1, 8)
Pengaruh nilai k:
- untuk gusuran menurut arah sumbu X → k positif arahnya ke kanan, k negatif arahnya ke kiri
- untuk gusuran menurut arah sumbu Y → k positif arahnya ke atas, k negatif arahnya ke bawah
Berdasarkan penjelasan diatas, maka dapat dirumuskan sebagai berikut :
Gusuran menurut arah sumbu X (Gx) dengan faktor skala k maka :

Gusuran menurut arah sumbu Y (Gy) dengan faktor skala k maka :

STRETCHING / REGANGAN

Persegi panjang ABCD dengan koordinat A(1, 1), B(4, 1), C(4, 6), D(1, 6) diregangkan:
- searah sumbu X dengan faktor skala k = 3 menjadi A2B2C2D2 dengan koordinat A2(3, 1), B2(12, 1), C2(12, 6), D2(3, 6)
- searah sumbu Y dengan faktor skala k = 2 menjadi A3B3C3D3 dengan koordinat A3(1, 2), B3(4, 2), C3(4, 12), D3(1, 12)
Pengaruh nilai k:
- untuk regangan searah sumbu X → k positif arahnya ke kanan, k negatif arahnya ke kiri
- untuk regangan searah sumbu Y → k positif arahnya ke atas, k negatif arahnya ke bawah
Berdasarkan penjelasan diatas, maka dapat dirumuskan :
Regangan searah sumbu X (Sx) dengan faktor skala k

Regangan searah sumbu Y (Sy) dengan faktor skala k

Transformasi dengan Matriks Transformasi Tertentu

KOMPOSISI TRANSFORMASI
merupakan
gabungan dari beberapa transformasi. Misalnya kita mempunyai
transformasi T1 akan dilanjutkan ke T2 maka ditulis T2oT1.

Komposisi Khusus :
1. Dua pencerminan yang berurutan terhadap sumbu-sumbu yang sejajar

2.
Dua pencerminan yang berurutan terhadap dua sumbu yang tegak lurus
ekuivalen dengan rotasi 180º yang pusatnya adalah titik potong kedua
sumbu tersebut.
3. Dua pencerminan terhadap dua sumbu yang
berpotongan ekuivalen dengan rotasi dimana titik pusat adalah titik
potong kedua sumbu dan sudutnya adalah sudut antara kedua sumbu.
4. Dua rotasi berurutan terhadap pusat yang sama ekuivalen dengan rotasi dimana pusatnya sejauh jumlah sudut keduanya.
LUAS HASIL TRANSFORMASI
Transformasi yang berupa
translasi,
refleksi, dan
rotasi tidak mengubah luas suatu benda

Mencari luas segitiga ABC jika diketahui koordinat titik A, B, dan C nya, maka kita dapat gunakan rumus :

Perhatikan contoh soal transformasi berikut ini.
Tentukanlah
persamaan bayangan kurva y = x2 + 3x -4 jika dicerminkan terhadap sumbu
X, kemudian didilatasikan dengan faktor skala 2 dengan pusat dilatasi
O(0, 0)
Penyelesaian :
cara 1 : cara langsung

cara 2 : menggunakan matriks

Demikian informasi mengenai
Transformasi Geometri, semoga dapat bermanfaat dan dapat membantu lebih memahami materi tersebut dan materi matematika pada umumnya.